Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.24.461759

ABSTRACT

FDA-approved and Emergency Use Authorized (EUA) vaccines using new mRNA and viral-vector technology are highly effective in preventing moderate to severe disease, however, information on their long-term efficacy and protective breadth against SARS-CoV-2 Variants of Concern (VOCs) is currently scarce. Here we describe the durability and broad-spectrum VOC immunity of a prefusion-stabilized spike (S) protein adjuvanted with liquid or lyophilized CoVaccine HT in cynomolgus macaques. This recombinant subunit vaccine is highly immunogenic and induces robust spike-specific and broadly neutralizing antibody responses effective against circulating VOCs (B.1.351 [Beta], P.1 [Gamma], B.1.617 [Delta]) for at least 3 months after the final boost. Protective efficacy and post-exposure immunity were evaluated using a heterologous P.1 challenge nearly 3 months after the last immunization. Our results indicate that while immunization with both high and low S doses shorten and reduce viral loads in the upper and lower respiratory tract, a higher antigen dose is required to provide durable protection against disease as vaccine immunity wanes. Histologically, P.1 infection causes similar COVID-19-like lung pathology as seen with early pandemic isolates. Post-challenge IgG concentrations were restored to peak immunity levels and vaccine-matched and cross-variant neutralizing antibodies were significantly elevated in immunized macaques indicating an efficient anamnestic response. Only low levels of P.1-specific neutralizing antibodies with limited breadth were observed in control (non-vaccinated but challenged) macaques suggesting that natural infection may not prevent reinfection by other VOCs. Overall, these results demonstrate that a properly dosed and adjuvanted recombinant subunit vaccine can provide long-lasting and protective immunity against circulating VOCs. One Sentence SummaryA recombinant subunit protein formulated with CoVaccine HT adjuvant induces superior immunity than natural infection and reduces viral load while protecting cynomolgus macaques from COVID-19-like disease caused by late SARS-CoV-2 P.1 (Gamma) challenge.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.24.220715

ABSTRACT

The current COVID-19 pandemic has claimed hundreds of thousands of lives and its causative agent, SARS-CoV-2, has infected millions, globally. The highly contagious nature of this respiratory virus has spurred massive global efforts to develop vaccines at record speeds. In addition to enhanced immunogen delivery, adjuvants may greatly impact protective efficacy of a SARS-CoV-2 vaccine. To investigate adjuvant suitability, we formulated protein subunit vaccines consisting of the recombinant S1 domain of SARS-CoV-2 Spike protein alone or in combination with either CoVaccine HT or Alhydrogel. CoVaccine HT induced high titres of antigen-binding IgG after a single dose, facilitated affinity maturation and class switching to a greater extent than Alhydrogel and elicited potent cell-mediated immunity as well as virus neutralising antibody titres. Data presented here suggests that adjuvantation with CoVaccine HT can rapidly induce a comprehensive and protective immune response to SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Hypertension
SELECTION OF CITATIONS
SEARCH DETAIL